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. Current focus in research
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lll. Mixed-effects & Generative models
IV. Not Euclidean data
V. AramislLab-related model

ll. Challenges in Medicine
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Il. Labels, variability and legal aspects
lll. Companies
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Disease Progression:
Progression of features, from a normal to a abnormal state

} Individual level
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} Group-average level

Longitudinal data:
Repeated observations of individuals at different time-points

Each row is a patient Each row is a visit

How to handle patients with different How to deal with multiple prediction
number of visits? per patient

Regress the longitudinal data and put Predict for each visit, and reprocess to
ratio values : slopes, coefficients, ... average : not easy -> what kind of

average, more weight to the last visit?
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Convolutional Neural Network - CNN

Convolution Pooling Convolution Pooling Fully-connected

Reccurent Neural Network - RNN

Especially Long-Short Term Memory - LSTM

one to one one to many many to one many to many many to many
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L] T D D.D‘T DﬂTﬂﬂ T Fig. 3. Collage of some medical imaging applications in which deep learning has

s T T 1 T T 1 1 achieved state-of-the-art results. From top-left to bottom-right: mammographic

] mass classification (Kooi etal, 2016), segmentation of lesions in the brain (top
ranking in BRATS, ISLES and MRBrains challenges, image from Ghafoorian etal.

(2016b), leak detection in airway tree segmentation (Charbonnier etal., 2017), di-
abetic retinopathy classification (Kaggle Diabetic Retinopathy challenge 2015, im-
age from van Grinsven etal. (2016), prostate segmentation (top rank in PROMISE12
challenge), nodule classification (top ranking in LUNA16 challenge), breast cancer
metastases detection in lymph nodes (top ranking and human expert performance
in CAMELYON16), human expert performance in skin lesion classification (Esteva
etal, 2017), and state-of-the-art bone suppression in x-rays, image from Yang etal.

One drawback of Deep Learningis its aorec
need of large datasets A survey on deep learning in medical image analysis

) Litjens et al. 2017
} Data augmentation

} Transfer Learning
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Mixed-effects models
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Generative models Examples:
* Bayesian statistics

. * Generative Adverserial Networks
Draw some new samples from the modelp(y;6) Hidden Markoy Chain

 Gaussian Mixture Model

} Better understand the distribution of the observations

} Draw new samples for other algorithms (classif/regression)
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Introduce a distance between the
features that are non-Euclidean
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Riemannian geometry
Geodesic
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From short-term observations to long-term
history

Various data:
g > Biomarkers
g > MRI & PET
Q >
., > .

Meshes

Inter-individual
variability

> Temporal

> Spatial

I [

Better understand the Personalize the model to Predict individual disease stage
mean disease progression charaterize individual trajectories and future outcomes
} Unsupervised learning } Manifold Learning

} Mixed-effects model } Generative model
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Results : Paraview & online
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What question(s) to answer

-  What does it mean to have a cancer at 92.1 %?

- ltisthe same to have afalse positive or a false negative?

- Two paradigms : Accuracy Vs Interpretability

- Answering a clinical question or optimizing some exotic metric?
(Be careful with “state-of-the-art” scores)

Labels, variability and legal aspects

Variability Legal aspects
—~——— <_JL...-_,,V

Labels

————
Not always « true » * Inter individual variability * Hard to get the data:
Definition may change | ¢+ Intra-individual variability : anonymization
over time nooneisclosertoyouthan |+ The dataofinterestare to
Are they really what yourself be asked before the clinical
one ultimately wants? |« Variability in the scan study

machine, procedures, ...
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Companies

# Microsoft

Health

Growing field

P = HealthVault

Intelligence Engine

Perfect fit between
intellectual interest and
social meaning

ned treatmentidecisions.

i Oncology 8 Y DeepMind Health

Stillmany challenges at a
research level

... but be careful of the hype,
especially «kMachine are better than doctors »

https://lukeoakdenrayner.wordpress.com/2016/11/27/do-computers-already-outperform-doctors/
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Few words about the
summer school project
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Medecine is a sexy field !

Thanks



