

23 - 25 July 2018

Lviv Data Science Summer School 2018

Machine Learning for Medical Applications: Introduction

Igor Koval

PhD Student in Applied Mathematics

Brain and Spine Institute, Pitié Salpétrière Hospital, Paris, France & Mathematical Laboratory of Ecole Polytechnique

igor.koval@icm-institute.org

INTRODUCTION

History of medecine

Increase of complexity, "time to response", variety, scale, ...

Machine Learning for Medical Applications

Machine Learning for Medical Applications

The accuracy of the tide phenomenon (at a local scale) does not come from its physical model ..

... but from its repetition

Machine Learning for Medical Applications

Medecine

Needs few examples to • understand a correlation or causality

Mechanistics problems

Treat the disease afterwards

•

- Increasing number of data

Complex pathologies (Cancer, AIDS, cancer, ...)

Prevent / Predict the disease

Examples (1/3)

 Detection of breast tumors and diabetes based on images (Deep Learning ; Kaggle)

- Test drugs on homogeneous cluster of people to assess the consistency
 - stency

 Diagnose the particular step of a disease (cancer tumor, Alzheimer's Disease, ...)

Examples (2/3)

 Reduce the cost of a diagnosis : cognitive scores instead of PET or MRI

• Better microscopy with Deep Learning

Exhibition of genes involved in Alzheimer's Disease

Examples (3/3)

 Kernels specially designed to built / create consistent molecules (considered as graphs)

 Personalized medecine : diabete people use a scale everyday to predict an upcoming risk

• And many more to come...

PLAN

The pipeline

Application & Corresponding prediction

Application

Mathematical prediction

Convert the medical problem, into a mathematical prediction Y = f(X)?

Application Mathematical prediction

- 1. Given a population whose individuals have a particular disease, we want to if there are subgroups.
- 2. An individual was diagnosed with cognitive impairments. The doctors want to know which degenerative disease the subject has.
- 3. We have individuals with the same disease. Given all their features, we want to know which are the most informative.
- 4. Personalized medecine; we want to adapt the treatment to a new individual.

Supervised / Unsupervised / Semi-supervised

Feature importance (Algorithm-based / Dimensionalityreduction based)

Application Mathematical prediction

- 1. An individual was diagnosed with a cancer. We want to assess the stage of the cancer.
- 2. A pharmaceutical group has a potential new preventive drug. It wants to maximize the chances of passing through the tests, i.e. having the best clinical impact.
- 3. Someone caries a gene that will express a disease at some point. We want to know when (s)he going to convert from normal state to abnormal.
- 4. Given a set of genes, we want to know which one(s) are related to a particular disease.

Supervised / Unsupervised / Semi-supervised

Feature importance (Algorithm-based / Dimensionalityreduction based)

- How to compare patients? For instance, big brain versus small brain
- How to know if someone is really representative of a healthy patient?
- How to know if the truth is true?
- Dimensionality curse -> Medecine is always cursed
- Doctors know the Linear Regression well ... The role of explanation is key
- Pharmaceutical : how to know if the change is related to the treatment or not?
 (Multi-armed bandit algorithms game theory related)
- Overlapping and/or continuous classes, labeled by the doctors