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Sorbonne Université, F-75013 Paris, France

2Inria, Aramis project-team, Paris, France
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Simulating the effects of Alzheimer’s disease on the brain is essential to better understand,1

predict and control how the disease progresses in patients. Our limited understanding of how2

disease mechanisms lead to changes seen in brain images and clinical examination hampers3

the development of biophysical simulations.4

We propose here a statistical learning approach, where the repeated observations of several5

patients over time are used to synthesise personalized digital brain models. They provide6

spatiotemporal views of structural and functional brain alterations and associated scenarios7

of cognitive decline at the individual level.8

We show that the personalization of the models to unseen subjects reconstructs their pro-9

gression with errors of the same order as the uncertainty of the measurements. Simulation of10

synthetic patients generalise the distributions of the data in the training cohort. The analy-11

sis of factors modulating disease progression evidences a prominent sexual dimorphism and12

probable compensatory mechanisms in APEO-ε4 carriers.13

This first simulator of its kind offers an unparalleled way to explore the heterogeneity of the14

disease’s manifestation on the brain, and to predict its progression in each patient.15

Numerical simulation has long been a central approach to understand complex systems, iden-16

tify their determinants, and predict their behaviour. Recently, simulation has also proved to be key17
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in artificial intelligence, for instance for its ability to simulate a large number of go games that has18

made it possible to build a computer program that can learn to play better than a human1. Simu-19

lating a go game is easy because the rules are perfectly known and easy to implement. Simulating20

a brain developing Alzheimer’s disease is more challenging because the biological mechanisms21

leading to the effects that are visible in brain images and clinical examinations are too imperfectly22

known2, like the reason why these mechanisms lead to so heterogeneous effects across individuals.23

However, as with any complex system, simulating the disease is certainly a very promising way to24

better understand how it develops, identify the factors that modulate its manifestation in different25

individuals, and predict its progression in each patient.26

We address here this simulation problem with a statistical learning approach. We design a27

computer program that automatically learns how Alzheimer’s disease affects brain structure and28

function from the repeated observations of several patients in time. It estimates a typical long-term29

scenario of change by normalizing, re-aligning in time and combining several individual short-30

term data sequences. During training, the model learns how this typical scenario should be varied31

to reproduce the heterogeneity of progression profiles seen in the data by allowing adjustments32

in terms of age at onset, pace of disease progression and appearance of the model. Once trained,33

the model can be personalized to new subject’s data or used to simulate entirely synthetic disease34

trajectories.35

Statistical approaches to model disease progression have mostly remained descriptive so far,36

and do not generate long-term disease trajectories that are shown to accurately reproduce the het-37
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erogeneity of the progression at the individual level3–9. In the absence of reliable markers of disease38

progression, a central difficulty is to distinguish in data the differences due to disease progression39

from those due to the inter-individual variability that is independent of it. For instance, it is not40

clear whether differences usually found in clinical studies are not confounded by the fact that one41

compares subject’s data who may be at different disease stages. It has recently been understood42

that seeing trajectories of data changes in the mathematical framework of the Riemmanian geom-43

etry allows one to ensure a unique decomposition between the variability in dynamics of disease44

progression (i.e. differences in age at onset or in pace of progression) and the inter-individual vari-45

ability at any given disease stage10, 11. The former is encoded by the temporal parameterisation of46

the followed trajectory, the latter by the position of the trajectory in space.47

We use data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). In order to re-48

produce the natural history of the disease from the pre-clinical to the clinical stage, we selected the49

322 subjects in this database who were included as cognitively normal (as defined in the ADNI50

protocol) or with mild cognitive impairments, and who had a confirmed clinical diagnosis of51

Alzheimer’s disease at a later time-point in the study.52

Whenever available, we use at each visit:53

• regional measurements of standard uptake value ratio (SUVR) of Fluoro-DeoxyGlucose54

(FDG)-Positron Emission Tomography (PET) to build models of hypometabolism across55

brain regions,56
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• maps of cortical thickness defined on a mesh of the cortex and extracted from T1-weighted57

Magnetic Resonance Images (MRI) to build models of cortical thinning,58

• surface meshes of the hippocampus of both hemispheres segmented also from T1-weighted59

MRI to build models of hippocampal atrophy, and60

• scores of the Mini-Mental State Examination12 (MMSE) and Alzheimer’s Disease Assess-61

ment Scale - Cognitive Subscale with 13 items13, 14 (ADAS-Cog), the latter being divided62

into four sub-scores assessing memory, language, concentration and praxis, to build models63

of cognitive decline,64

which amounts to 687 visits with PET images, 1,993 visits with MRI data and 1,235 visits with65

neuro-psychological assessments (See Methods and Extended Data Table 1 for summary statistics).66

We represent the data as points on a multi-dimensional Riemannian manifold (see Fig. 1).67

For each modality, we choose a manifold that is adapted to the structure of the data: normalized68

measurements, image, or shape with a specific topology. Repeated observations of the same subject69

are thus seen as noisy samples along a curve on the manifold. Furthermore, we assume that such70

individual curves result from random spatiotemporal transformations of a geodesic curve that is71

common to the population. This hierarchical structure forms a mixed-effects statistical model10, 11.72

The population geodesic is parameterized by an initial point on the manifold p0 of the same73

type as the data, a velocity v0 and a time-point t0. By an appropriate choice of the Riemannian74

metric, we prescribe a certain form for this curve. For neuro-psychological assessments, each75
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score follows a logistic curve10, 11. Cortical thickness decreases at a linear rate at each vertex of the76

surface, while ensuring that slopes (v0) and intercepts (p0) vary smoothly over the surface15. Re-77

gional SUVR maps also decrease at a linear rate with smoothly varying parameters across neighbor78

regions. The shape of the hippocampus meshes is changed by a smooth and invertible 3D defor-79

mation called diffeomorphism16–18. The use of the Riemmannian setting allows us to deal with all80

these data types with the same method and very similar algorithms (see Methods).81

Subject-specific curves derive from the population average by random spatiotemporal trans-82

formations. Each transformation is composed of a parallel shift of the geodesic curve on the83

manifold called Exp-parallelization11, 19 combined with a linear time-reparameterization of the tra-84

jectory. The former is defined by a direction on the tangent-space of the manifold at some reference85

point, called “individual space-shift”. The latter is defined by an acceleration factor and a time-shift86

encoding differences in pace of progression and delay at onset. Space-shifts encode variability in87

the magnitude of the effects, ordering of events, or change in the spatial pattern of alterations. More88

precisely, for SUVR regional measurements and cortical thickness maps, the space-shift encodes89

inter-subject variations in the ordering and relative timing of the alterations across the regions. For90

hippocampus meshes, it encodes variations in the shape of the structure for different individuals.91

For neuro-psychological assessments, it encodes the variations in the ordering and timing among92

different scores. We ensure that the effects of the space-shifts are not confounded by the changes93

due to disease progression along the population average trajectory by imposing an orthogonality94

condition between space shifts and the velocity of the geodesic at all time-points10, 17. It makes the95

statistical model identifiable.96
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Figure 1: Hierarchical statistical model. Individual data acquired at age tij are seen as noisy sam-
ples along a subject-specific curves (blue) lying on a Riemannian manifoldM . These curves derive
from an Exp-parallelization (in the direction wi in red) of a common population geodesic curve (in
grey, parameterized by a point p0, a velocity v0 and a time t0) and a time-reparametrization. The
maximization of the model likelihood given longitudinal data estimates a typical long-term sce-
nario of change, which is informed by a series of individual short term data sequences that are
normalized and temporally aligned. Orthogonality condition ensures unique decomposition be-
tween changes due to inter-individual variability at the same disease stage and the ones due to
disease progression. Once trained, the model can be used to fit new data, or generate entirely
synthetic trajectories.

All in one, we define a mixed-effects statistical model, which may be written as yij =97

f(θ, zi, tij) + εij , where yij is the j-th observation of the i-th subject observed at age tij , f is98

a non-linear function that is specific to each data type, and εij is a residual noise. The vector θ con-99

tains the fixed-effects p0, v0, t0, the variance of the random-effects and the variance of the noise,100

and the vector zi corresponds to the random-effects: acceleration factors, time-shifts and space-101

shifts, which are specific to each individual. We add priors on the coordinates of the vector θ in a102

Bayesian setting. When t is varied, the curve f(θ, zi, t) represents the subject-specific trajectory at103

any time t.104
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We now consider three successive statistical tasks:105

• calibration: given the longitudinal data set {yij, tij}i=1,...,N,j=1,...,Ni
for a certain type of106

data, we find the value of parameters θ that maximizes the joint likelihood p({yij}ij, θ) =107

p({yij}ij|θ)p(θ). The optimal value θ̂ fully specifies the model of disease progression;108

• personalization: for the optimal value of the parameter θ̂, we personalize the model to the109

repeated data of a subject i (either a training subject, or a test subject in a cross-validation110

setting) {yij, tij}j=1,...,Ni
by finding the optimal value of the random-effect ẑ that maximizes111

the conditional likelihood p({yij}j, z|θ̂);112

• simulation: for the optimal value of the parameter θ̂, we can simulate random-effects z and113

generate synthetic data y at any user-defined time-point t by computing y = f(θ̂, z, t) and114

adding noise.115

We use a stochastic approximation of the Expectation-Minimization algorithm20, 21 for calibration,116

gradient-descent based method or Powell’s method for personalization, and kernel density estima-117

tion together with dimension reduction for simulation (see Methods).118

Multimodal disease progression models119

For each data type, we calibrate the model parameters using all available visits of the selected120

subjects. The resulting normative models of progression are estimated relatively to a different121

temporal reference frame for each data type. For visualization and interpretation purposes, we122
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synchronize the different models using affine time-reparametrization with the cognition model as123

a reference. Furthermore, we used the age at which each subject has been diagnosed with the124

disease to find the corresponding stage of progression at diagnosis on the reference time-line (see125

Methods).126

Fig. 2 shows the synchronized models of hypometabolism, cortical thinning, hippocampal127

atrophy and cognitive decline at four representative time-points encompassing 16 years before128

diagnosis and 8 years after. These models may be visualized at a fine temporal resolution in the129

form of an interactive visualization at the website: www.digital-brain.org.130
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The greatest alterations of glucose hypometabolism are found in the following regions that131

are consistent with previous studies: precuneus22–24, prefrontal areas25 and the parahippocampal132

region26 (see Fig. 2 and Extended Data Fig. 1 showing annual SUVR decrease rate at age of diag-133

nosis).134

The greatest cortical atrophy (Fig. 2 and Extended Data Fig. 2 showing annual atrophy rate135

at age of diagnosis) also occurs in regions that are usually associated with it in the literature: the136

enthorinal cortex, the hippocampal gyrus, the temporal pole and the fusiform gyrus27, 28, cortical137

association areas (inferior parietal lobe29 and temporal lobe30) and the precuneus31. As expected,138

very little atrophy is shown to occur in the occipital lobe and the cingulate gyrus. More suprisingly,139

the model shows atrophy in the precentral gyrus and the paracentral lobule. Whether these regions140

are affected by cortical thinning due to Alzheimer’s disease is still a debated question32. It is worth141

noting that the noise of the measurement is by far the greatest in these areas, as measured by142

the residual noise of a linear regression performed for each subject independently, which present143

coefficients of determinationR2 lower than 0.25. Therefore, the high level of uncertainty in cortical144

thickness measurement must be taken into account when interpreting results in this region, and is145

probably a reason for disagreements across studies.146

Deformation of the hippocampus due to neuronal loss during disease progression exhibits a147

complex pattern with deformation occurring more in the lateral parts of the hippocampus than in148

the antero-posterior direction. This complex pattern of shape changes is likely to be the conse-149

quence of tissue remodeling occurring within the temporal lobe due to neuronal loss. It suggests150
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that shape descriptors may be a more sensitive marker of disease progression than just the volume151

that is usually used in clinical studies33, 34.152

The model of cognitive decline shows a typical sequence of cognitive impairments, as mea-153

sured by combinations of the ADAS-Cog with 13 items, during the course of the disease starting154

with memory, followed by concentration 9.6 years after, praxis 9.8 years after, and finally language155

3.3 years after. It has been shown that Alzheimer’s disease diagnosis occurs when the ADAS-Cog156

is comprised between 18.6 and 28.9 (i.e. between 0.21 and 0.34 in the normalized scale)35, which157

is reached between 74 and 80 years old in our normative time-line. Similarly, the diagnosis usu-158

ally occurs for a MMSE score comprised between 27 and 23 (i.e. 0.1 and 0.23 in the normalized159

scale)36, which occurs between 74 and 81 years old in our normative time-line. The age at diag-160

nosis in the normative time-line has been estimated at 78 (±5.6) years old. The consistency of161

these estimates shows that the algorithm was able to correctly align the individual short term data162

sequences around the diagnosis time, by using solely the analysis of the spatiotemporal patterns of163

data changes and not the age at which the subjects were diagnosed.164

Interestingly, we notice that the estimated scenario of hypometabolism and cortical atrophy,165

which encompasses 16 years before diagnosis, shows the greatest alterations in the associative166

areas of the parietal lobe and in the medial frontal lobe, and to a lesser extend in the entorinal167

and para-hippocampus regions. It suggests that the most prominent changes in the hippocampus168

regions, a well known effect of Alzheimer’s disease, must have occurred at least 15 years before the169

onset of memory impairment and the clinical diagnosis. This multi-modal disease model confirms170
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the large time gap between development of brain lesions seen in images and the onset of cognitive171

decline seen in clinical observations.172

Reconstruction errors and generalization to unseen data173

We use a five-fold cross-validation procedure to replicate model calibration five times on 80%174

of the training data set. The consistency of the fixed-effects estimates in this cross-validation175

setting shows the robustness of the estimation algorithm in different runs against resampling in the176

training set (see Extended Data Table 2). Furthermore, the delay between impairment of cognitive177

functions, as they are defined by our division of the ADAS-Cog with 13 items, is, relatively to178

memory, of 9.4 ± 1.6(std) yrs for concentration (9.6 yrs using all data), 19.9 ± 2.0(std) yrs for179

praxis (19.4 yrs using all data), 23.3± 2.6(std) yrs for language (22.7 yrs using all data).180

We personalize now the estimated models to the repeated observations of any subject. On181

the one hand, we personalize the model to the training subjects using the whole data set. It yields a182

set of individual parameters for each subject. On the other hand, we estimate the model using 80%183

of the subject and then personalize it to the remaining 20% subjects, yielding a set of individual184

parameters for test subjects only. After five splits, we recover a full set of individual parameters185

estimated in a cross-validation setting. We show that the discrepancy between individual effects es-186

timated as training or test sample is small with r2 comprised between 0.93 and 0.99 (see Extended187

Data Fig. 3).188

After showing the robustness of both the fixed and random effects estimates, we assess now189
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the goodness-of-fit of the model by measuring the reconstruction errors between the fitted model190

and the observed data. We do not expect a perfect match between prediction and observations191

as we imposed smoothness constraints on the spatial and temporal variations of the data and es-192

timated a level of noise during model training with the aim to avoid over-fitting and allow better193

generalization. Assessing the accuracy of goodness-of-fit is a difficult task, as one does not know194

the true level of noise of the measurements. We estimated this measurement uncertainty using test195

/ re-test MRI sessions, PET data at baseline and follow-up for amyloid negative cognitively nor-196

mals subjects and a literature review of reproducibility of neuro-psychological assessments (see197

Methods).198

Fig. 3 shows the superimposition of the empirical distribution of reconstruction errors with199

the empirical distribution of the noise for all data types. Overall, the two distributions largely200

overlap, and the standard error is of the same order than the measurement noise (see Extended201

Data Table 3). We notice that the reconstruction errors in brain regions are not evenly distributed.202

For PET data, the largest errors are found mostly in smaller regions. For cortical thickness, larger203

errors are found at the boundary of the mesh with the corpus callosum, mostly due to interpolation204

errors. These errors are much smaller than the best possible image resolution of 1 mm isotropic,205

thus making our reconstructions at sub-voxel precision.206

We measure distance between hippocampus meshes using the currents distance, which allows207

one to compare shapes with different samplings while being robust to small protrusion or topology208

changes37. As a consequence, the personalization of the model tends to ignore the many spikes209
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(a) FDG-PET images
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(b) Cortical Thickness maps
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(c) Left hippocampus mesh (d) Right hippocampus mesh (e) Neuro-psychological assessments

Figure 3: Error of reconstruction of the model. The empirical distribution of errors (red) is super-
imposed with the estimated distribution of test / re-test differences (in blue). For FDG-PET images
and cortical thickness maps the absolute relative error is shown in every brain region. Mean and
standard errors are given in Extended Data Table 3.
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pointing outward that are often seen in the segmentations. Reconstructed meshes are smoother210

than observations, resulting in an under-estimation of the volume of the observation (see Extended211

Data Fig. 4). It is more desirable to accurately reconstruct the shape rather than the volume, which212

is very sensitive to small segmentation errors. For instance, 83% of the subjects shows sequences of213

segmentation volume that are not monotonously decreasing, compared to only one subject for the214

volume of reconstructed meshes. Nevertheless, one should keep in mind that our reconstructions215

present a systematic bias in volume compared to the volume of the original segmentations.216

Eventually, we measured the same reconstruction errors but when personalizing the model217

to data that were not seen during model calibration in the five-fold cross-validation setting. Distri-218

butions of these reconstruction errors are essentially identical with the previous ones obtained by219

calibrating and personalizing the model on the whole data set (see Extended Data Fig. 5). Only220

hippocampus shows a slightly higher generalization errors but still below the noise level estimated221

with test / re-test data. The reconstruction of unseen data is as good as the reconstruction of the222

training data, thus showing that the personalization of the model generalizes well to new individual223

data sequences.224

Simulation of virtual cohorts225

We now take advantage of the generative aspect of the statistical model to simulate entirely syn-226

thetic patients developing Alzheimer’s disease. Calibration yields a series of individual parameters,227

from which we estimate the empirical posterior distribution. We sample random parameters from228
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this distribution, and use them to generate synthetic trajectories and then synthetic data as noisy229

samples along the simulated trajectory.230

More precisely, for each gender status, we compute a kernel density estimation for the joint231

probability distribution of the temporal parameters: age at baseline, time-shift and speed factors.232

We then compute the multivariate Gaussian distribution of all other parameters conditionally to233

the temporal parameters. We draw samples from these two empirical distributions, and generate234

synthetic data at any given age of these virtual patients (see Methods).235

To validate such simulations, we replicate the original ADNI data set by randomly picking236

a baseline age and simulating men and women subjects with the same sex ratio, the same number237

and same frequency of observations as in the original cohort. We then compute the distributions238

of simulated regional SUVR, cortical thickness, hippocampus volume and neuro-psychological239

assessments, and superimposed them with the distributions of the original data, and the data we240

reconstructed previously by model personalization.241

The superimposition of the distributions shows that the simulated data closely replicate the242

reconstructed data for all modalities (see Fig. 4). For the hippocampus volume, the simulated data243

have the same bias than the reconstructed data in comparison to the real data. This fact is expected244

as the simulation reproduces the variability learned by the model. This experiment shows that the245

model accurately reproduces the diversity of disease progression patterns observed in the training246

cohort. It can be used therefore as a simulator of subjects developing Alzheimer’s disease, which247

replicates the heterogeneity of the disease progression.248
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This simulator can be used to arbitrarily increase the number of subjects, number of visits249

and visits frequency in the training cohort. These data augmentation and resampling techniques250

are essential to improve the performance of machine learning algorithms. It can also be used to251

create large validation sets to better evaluate their generalization errors.252

These models can be seen as an anonymous replicate of the training cohort, which can there-253

fore be transferred and shared without regulatory constraints in lieu of the data itself. In this way,254

they allow the comparison and combination of multiple cohorts that would otherwise be very dif-255

ficult to inter-operate. They can thus be used to detect the respective biases of these cohorts, and256

possibly correct them by simulating patients with a re-balanced disease stage distribution, sex ratio,257

or ratio of APOE-ε4 carriers for instance. The identification of such biases is essential because they258

are then found in the predictive systems trained on these cohorts. In this regard, it would be rele-259

vant to compare our results obtained on a research cohort with other types of cohorts, particularly260

epidemiological ones, if there are any with as many imaging modalities.261

Analysis of factors modulating disease progression262

We have just shown that the empirical distribution of the model parameters allows us to precisely263

reproduce the heterogeneity of the disease progression profiles. We are now in a position to ex-264

amine how certain factors can explain this heterogeneity, or in other words, whether these factors265

determine particular progression patterns.266

We recall that three parameters control the progression profile of the disease at the individual267
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Figure 4: Statistics of simulated data. Superimposition of empirical distributions for simulated
data (blue), reconstructed errors (red, as in Fig. 3) and real data (orange).
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level: a time-shift that accounts for delay at onset, an acceleration factor that accounts for differ-268

ent pace of progression, and a multivariate space-shift that accounts for differences in the spatial269

pattern of the alterations or the delay between the decline of cognitive functions.270

For each modality, we perform a multivariate linear regression between each of these pa-271

rameters and a series of genetic, biological and environmental factors: sex, APOE-ε4 genotype,272

presence of amyloidosis, marital status and education level. We identify statistically significant as-273

sociation using a two tailed t-test at 5% significance level corrected for multiple comparisons with274

the false discovery rate method (see Methods). Note that in this study, we discard subjects without275

assessments of amyloidosis (see Extended Data Table 1 for corresponding number of samples).276

We find that (see Table 1 for adjusted p-values and confidence intervals):277

• no factor is associated with progression of brain glucose hypometabolism,278

• atrophy of the hippocampus279

– progresses faster in women than in men by a factor 1.23 and 1.21 in left and right280

hemispheres respectively; starts earlier in women by 12.4 and 8.7 months for left and281

right hemispheres respectively; and exhibits a different pattern of deformation for men282

and women in both hemispheres (Extended Data Fig. 6);283

– progresses 1.22 times faster in the left hemisphere of the APOE-ε4 carriers, and arises284

earlier by 35.8 and 32.5 months for left and right hemispheres respectively;285

– progresses faster in amyloid-positive subjects by a factor 1.52 and 1.67 for left and286
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right hemispheres respectively;287

– progresses 1.14 times faster in the left hemisphere of the married subjects; and starts288

earlier by 42.5 and 36.3 months in the left and right hemispheres respectively; as com-289

pared to non-married subjects;290

– starts earlier in educated subjects by 3.73 and 6.97 months per year of education for291

left and right hemispheres respectively;292

• decrease in cortical thickness293

– exhibits a different spatial pattern for men and women (Extended Data Fig. 7);294

– occurs 1.42 times faster in APOE-ε4 carriers;295

– exhibits a specific spatial pattern of thinning for amyloid positive subjects (Extended296

Data Fig. 8);297

• cognitive decline298

– progresses 1.46 times faster in women and starts 36.8 months earlier than in men;299

– progresses 1.25 times faster in APOE-ε4 carriers than in non-carriers;300

– starts 21.9 months earlier for amyloid positive subjects than in amyloid negative sub-301

jects;302

– starts 32.6 months earlier for married subjects than non-married subjects.303
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These results show that the alteration of brain metabolism progresses in an undifferentiated304

manner unlike atrophy that exhibits different spatiotemporal patterns according to the characteris-305

tics of the subjects. If both atrophy and hypometabolism are believed to reflect the accumulation306

of neuro-fibrillary tangles in the brain, then the relationship between tangles and hypometabolism307

must be quite different in nature and less sensitive to genetic and environmental factors than that308

between tangles and atrophy. Similarly, the hypothesis that atrophy may be the late consequence309

of hypometabolism cannot be reduced to a simple mechanical effect resulting from the progressive310

loss of neurons.311

The absence of associations between cofactors and profiles of hypometabolism may be ex-312

plained also by the fact that focal effects on specific brain areas may be diluted in non-specific313

regions of interest38. Previous findings showing associations are also likely to be due to the com-314

parison of subjects at different ages or disease stages38, 39. In this regard, it is interesting to notice315

that, except in four occasions, we found associations with parameters that modulate the dynamics316

of disease progression, not its trajectory. This fact suggests that previous findings showing associ-317

ation of these usual factors with the severity of atrophy, hypometabolism or cognitive decline are318

likely to be due to a non-proper temporal alignment of individual data.319

There is a bilateral asymmetry in the hippocampus atrophy, with slightly more associations320

found in the left hemisphere. This fact is in line with previous findings suggesting that subjects with321

language impairment are more easily detected by clinical examination and neuro-psychological322

assessments, thus yielding to a higher prevalence of subjects with more pronounced atrophy in the323
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left hemisphere in clinical studies40.324

Our results also show the predominant role of genetic factors to explain the heterogeneity of325

the manifestation of the disease. In particular, disease progression presents a strong sexual dimor-326

phism for hippocampus atrophy and cognitive decline. This question raises more and more atten-327

tion in the scientific community, although its consequences for clinical trials and care have not yet328

been drawn41–44. The accelerated and earlier atrophy in women translates into an accelerated and329

even earlier cognitive decline. This dimorphism does not seem to be alleviated by compensatory330

mechanisms. By contrast, APOE-ε4 carriers also exhibit earlier and more pronounced alterations331

of their hippocampus, but this effect is, to some extend, alleviated in the onset of cognitive decline,332

which does not occur earlier than non-carriers, but still at a greater pace. It is as if brain plasticity333

is able to compensate for the advance of almost 3 years in hippocampal atrophy, but that once334

the compensation is made, cognitive decline still manifests itself at a faster rate than in subjects335

without the mutation.336

Independently of disease progression, we found a sex dimorphism in the shape of hippocam-337

pus in both hemispheres (significant space shifts in Table 1). The position of the hippocampus338

presents a greater angle of rotation with respect to the brain stem in women, which makes it more339

forward-facing than in men (Extended Data Fig. 6). Sex differences are also found in the spatial340

pattern of cortical thickness with a more pronounced bilateral asymmetry in women than in men.341

These differences are the consequences of the well-known dimorphism in brain development, and342

are independent of disease progression. No such differences in brain structure are found for other343
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co-factors.344

The presence or absence of amyloid plaques in the development of the disease tends to345

change the spatial patterns of cortical atrophy, which may be due to accumulation of plaques in346

specific brain areas (Extended Data Fig. 8). However, the pattern of cognitive decline is similar.347

The current definition of the disease makes the diagnostic of Alzheimer’s disease inappropriate348

in subjects without amyloidosis45. The similar cognitive presentation of these subjects may ex-349

plain the difficulty for clinicians to distinguish between cases. Subjects without amyloidosis and350

diagnosed with Alzheimer’s disease show a later onset of cognitive decline, which occurs nearly351

2 years after (21.9 months, CI=[2.5,41.2]) the general case of amyloid positive subjects. Older352

subjects may be more difficult to diagnose with more overlapping symptoms and co-morbidities46.353

Marital status seems to be the environmental factor having the strongest effect on disease354

progression. Married subjects tend to experience an alteration of their hippocampus more than 4355

years earlier than divorced, widowed or never married subjects. This delay at onset is reduced to356

2.6 years at the cognitive level. Compensation effects are not surprising as the marital status is357

likely to be linked with social habits that may be associated with disease progression47. Further358

interpretation is difficult since this status covers very heterogeneous individual situations.359

Finally, we compute the co-variations among the individual parameters: time-shifts, accel-360

eration factors, space-shifts and age at baseline (see Extended Data Fig 9). These co-variations361

present a consistent pattern for all modalities. Age at baseline strongly correlates with time-shift,362

showing that subjects were included in the study at similar disease stages. Time-shift and speed363
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factors anti-correlate, showing that early onset individuals tend to progress faster, and conversely364

that late onset individuals tend to progress slower48, 49. Space-shift correlates with age at baseline,365

notably for the hippocampus atrophy, suggesting that early onset individuals also present a specific366

pattern of atrophy than late onset individuals.367

Conclusion368

The digital brain models we have built provide, for the first time, a comprehensive view of how369

structural and metabolic alterations propagate in the brain, both in space and time, and how they370

relate to specific sequences of decline in cognitive functions. These models not only show the371

typical trajectory of disease progression, but also allow the heterogeneity of this progression to be372

accurately reproduced. In this way, they offer us an incomparable way to identify the factors that373

influence this progression at the individual level, and to show how they modulate it. We were able374

to highlight the strong sexual dimorphism in the rate and precocity at which the disease progresses,375

as well as probable compensation mechanisms in carriers of some genetic risk factors.376

We have shown that these models form simulators for multi-modal images and neuro-psychological377

assessments of virtual patients whose characteristics reproduce those of the patients observed in378

the training cohort. From now on, it will no longer be necessary to make voluminous medical data379

repositories available, which is always difficult from a technical and regulatory point of view. It380

will be sufficient to share a simple computer code that will be able to regenerate the cohort in any381

laboratory, and even increase the number of samples, homogenize the frequency of observations382
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of subjects, or even correct some bias in the composition of the cohort.383

If calibrated on a few data from a new patient, these simulations reconstruct the patient’s384

trajectory with the same precision as the uncertainty of the observations themselves. These per-385

sonalized simulations may thus serve to predict the future state of the subject’s brain and cognitive386

functions, measure related risks, and tomorrow measure and predict the effect of a treatment. They387

represent therefore a decisive step towards the advent of precision medicine in neurology.388
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Methods615

Data Set Data used in the preparation of this article were obtained from the Alzheimer’s Disease616

Neuroimaging Initiative (ADNI) databasea. The ADNI was launched in 2003 as a public-private617

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI618

has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography619

(PET), other biological markers, and clinical and neuropsychological assessment can be combined620

to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease621

(AD).622

We used all available visits from ADNI, ADNI-GO and ADNI-2 data sets for all subjects623

who:624

• have been diagnosed with Alzheimer’s Disease (AD) at least at one visit;625

• have been diagnosed as Mild Cognitive Impaired (MCI) subjects at least at one visit;626

• did not revert to Cognitively Normal (CN) stage after being diagnosed as MCI or AD, nor627

revert to MCI or CN stage after being diagnosed with AD.628

350 subjects satisfied the first two criteria. The third criterion excludes subjects with doubtful629

diagnoses: 28 subjects were then excluded, leading to a subset of 322 subjects representing a total630

ahttp://adni.loni.usc.edu/
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of 2136 visits. We define 3 overlapping sub-sets by selecting different data types: ADAS-Cog &631

MMSE, FDG-PET images and MRI images. Table 1 provides summary statistics of these data632

sets.633

For each subject, we used the following additional data: age at each visit, sex, marital status,634

educational level, Apolipoprotein E (ApoE) polymorphism, and presence of amyloidosis. More635

precisely, we define:636

• marital status as: married versus non-married meaning widowed, divorced, or never married;637

• educational level as the number of years of education;638

• ApoE-ε4 carriership as the presence of at least one allele ε4 of the ApoE gene;639

• Amyloid status as positive if one of these conditions was met at one visit at least:640

– a Standard Updake Value ratio (SUVR), normalized by the entire cerebellum, greater641

than 1.1 in a PET image acquired with Florbetapir (AV-45) compound50, 51;642

– an average SUVR, normalized by the cerebellum, greater than 1.47 in a PET image643

with a Pittsburgh compound B (PiB)51;644

– a level of beta amyloid 1-42 (Aβ42) (measured with the Roche Elecsys assaysb) in the645

cerebrospinal fluid (CSF) lower than 1098 pg/mL52;646

unknown if no values of CSF biomarkers and no AV45 or PiB PET images were available at647

any visit in the ADNI-merge file; and negative otherwise.648

bhttp://adni.loni.usc.edu/new-csf-a%CE%B21-42-t-tau-and-p-tau181-biomarkers-results-from-adni-biomarker-
core-using-elecsys/
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Not counting 7% of the population with an unknown amyloid status, 83% of the remaining held a649

stable positive status status across all their visits, while 9% have their visits consistently negative650

– the last 8% present an evolution of its status through time. The stable positive and negative651

individuals allows to distinguish the subjects who have developed Alzheimer’s Disease in presence652

of amyloidosis, from those who developed the clinical signs of the disease without the significant653

development of amyloid plaques.654

Pre-processing and feature extraction We used the global MMSE score and aggregated scores655

from the 13 items of the ADAS-Cog. Furthermore, we pooled the 13 items into four sub-categories:656

memory by adding items 1, 4, 7, 8 and 9, language by adding items 2, 5, 10, 11 and 12,praxis by657

adding items 3 and 6, and concentration with item 13. Each value is normalized by the maximum658

possible value for the global score or for each category.659

Regional FDG-PET SUVR were extracted using the second version of the Automated Anatom-660

ical Atlasc (AAL2)53, 54 with 120 regions covering the cortex and the main subcortical structures,661

using the open-source community software Clinicad 55. The software performs intra-subject reg-662

istration of the FDG-PET image into the space of the subject’s T1-weighted MRI image using663

Statistical Parametric Mappinge (SPM) software (version 12)56. The PET image is then spatially664

normalized into MNI space using DARTEL deformation model of SPM, and its intensities normal-665

ized using the average uptake value in the pons as reference region. The SUVR map is obtained666

by averaging resulting intensities in each region of the atlas 57.667

chttp://www.gin.cnrs.fr/fr/outils/aal-aal2/
dhttp://clinica.run/doc/Pipelines/PET Volume
ewww.fil.ion.ucl.ac.uk/spm/
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The MRI images were first processed independently with the cross-sectional pipeline of668

the FreeSurferf software (version 5.3.0) 58, 59. The longitudinal FressSurfer pipeline is then used669

to create subject-specific templates from the successive data of each subject and refine image670

segmentations60. These segmented images are used then to extract a cortical thickness map, and a671

mesh of the left and right hippocampus.672

We used the cortical surface mesh projected onto the average space called FSaverage with673

163,842 vertices. For dimensionality reduction purposes, we then674

• inflate the FSAverage mesh to a sphere using FreeSurfer, on which 3,658 vertices (called675

patch-nodes) are selected to map the whole sphere uniformly,676

• associate each vertex to its closest patch-node, resulting in a parcellation of the cortical mesh677

into 3,658 patches that are uniformly distributed over the surface, where a patch contains on678

average 44 vertices,679

• compute the average value of the cortical thickness in each patch.680

We also align the skull-stripped images with an affine 12-degrees-of-freedom transformation681

onto the Colin27 template braing, using the FSL 5.0 softwareh61. Mesh representations of the682

geometry of the left and right hippocampus result from the following steps:683

• the volumetric segmentations of the hippocampi obtained by FreeSurfer are transformed into684

fhttps://surfer.nmr.mgh.harvard.edu
ghttp://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27
hhttps://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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meshes using the aseg2srf softwarei,685

• the resulting meshes are decimated by a 88% factor using Paraview, 5.4.1j62,686

• then aligned using the previously-computed global affine transformation estimated with the687

FSL software,688

• residual pose differences among subjects are then removed by rigidly aligning the meshes689

from the baseline image of each subject to the corresponding hippocampus mesh in the690

Colin27 atlas image, this transformation with 6 degrees of freedom being computed with the691

GMMReg softwarek63,692

• the same transformation is eventually used to align the meshes from the follow-up images of693

the same subject.694

Data representation and choice of Riemannian metrics The statistical model may be written

as:

yij = ηwi (γ0) (ψi(tij)) + εij (1)

where695

• γ0 : t→ Expp0 ((t− t0)v0) is the population average trajectory in the form of a the geodesic696

passing at point p0 with velocity v0 at time t0 (Exp denotes the Riemannian exponential as a697

concise way to write geodesics),698

ihttps://brainder.org (version of July 2009)
jwww.paraview.org
khttps://github.com/bing-jian/gmmreg (version of July 2008)
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• ηwi (γ0) : t → Expγ0(t)
(
P t0,t
γ0

(wi)
)

is the exp-parallelisation of the geodesic γ0 in the699

subject-specific direction wi, called space-shift, as depicted in Fig. 1 (P t0,t
γ0

(wi) denotes the700

parallel transport of the vector wi along the curve γ0 from γ0(t0) to γ0(t)),701

• ψi : t→ αi(t−t0−τi)+t0 is a time-reparameterizing function, where αi is a subject-specific702

acceleration factor and τi a subject-specific time-shift.703

For identifiability purposes, we impose the vectors wi to be orthogonal to the velocity v0 in704

the tangent-space at point p0. Parallel transport being isometric, this property then holds at any705

time point. The random effects of the model are:706

• an acceleration factor αi, which accounts for the variations in pace of disease progression,707

and therefore distinguishes the fast from the slow progressing individuals,708

• a time-shift τi, which accounts for the variations in age at onset, and therefore distinguishes709

the early from the late onset individuals,710

• a space-shift wi (a vector pointing a direction on the manifold), which accounts for the711

variations in the position of the individual trajectory, and therefore captures differences in712

patterns of disease progression (magnitude of the effects, re-ordering of events, change in713

the spatial pattern of alterations for instance, as detailled below).714

Their prior distributions are a log-normal distribution for the acceleration factors, zero-mean Gaus-715

sian distribution for the time-shift. Space-shifts are decomposed into a series of independent com-716

ponents: wi = Asi where the columns of A contains a pre-defined number of vectors in the717
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orthogonal space of v0, called components, and si are random weights, called sources and dis-718

tributed according to a normal distribution for non-Euclidean metrics and a Laplace distribution if719

the manifold is Euclidean, for identifiability purposes.720

We concatenated the aggregated MMSE score and the four sub-categories of the ADAS-Cog721

to build a 5-dimensional feature vector, which is seen as a point in a 5-dimensional hyper-cube722

[0, 1]5. We provide this manifold with a diagonal metric tensor which ensures that a geodesic723

in this hyper-cube is formed by 5 logistic curves, that are further assumed to be parallel to each724

others: γ0,k(t) = γlogit(t + δk) with γlogit(t) =
(

1 + 1−p0
p0

exp
(
−v0(t−t0)
p0(1−p0)

))−1
. A parallel shift of725

the population geodesics in this hyper-cube translates into a change in the temporal delay between726

the logistics curves of each coordinate10, 11: ηwi
k (γ0)(t) = γlogit

(
t+ δk +

wi,k

γ̇logit(t0+δk)

)
.727

Maps of cortical thickness take the form of a vector of 3,658 coordinates corresponding728

to the measurements values at every patch node, seen as a point in the Euclidean space R3,658.729

Geodesics are straight-lines in this space, where each coordinate k ∈ {1, . . . , 3, 658} is a one-730

dimensional straight-line of the form: γk = pk+vk(t−t0). The exp-parallelisation in the Euclidean731

space corresponds simply to a translation, so that each coordinate is transformed into15: ηwi
k (γ0) =732

pk +wi,k + vk(t− t0). The fixed-effects p0 and v0 are vectors of size 3,658 whose k-th coordinate733

pk and vk are the reference intercept and slope at the k-th patch respectively. We select a sub-set of734

911 control nodes (ci)1≤i≤911 among the patch nodes, and create a mapping which generates 3,658735

values from the 911 values using a manifold-kernel smoothing interpolation. Let the k-th path736

node be xk ∈ R3, corresponding to the Euclidean coordinate of the center of the path. The value737

pk = p(xk) =
∑911

i=1 exp
(
−d(xk,ci)

2

σ2

)
βi corresponds to the value of the parameter at the k-th node.738
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The βi are the 911 values at the control nodes ci, the distance d(xk, ci) is the geodesic distance on739

the cortical surface mesh between patch node xk and control nodes ci, and σ is a scalar parameter740

taken equal to 20mm, which is approximately 2.5 times the average distance between neighbors741

control nodes (namely the three closest control nodes to a given control node). The same kernel742

mapping is used to generate the values (vk)1≤k≤3,658. By construction, the maps generated by this743

operation are varying smoothly over the surface mesh and are controlled by a smaller number of744

parameters.745

Each PET measurement is characterized by a vector in R120 whose k-th coordinate corre-746

ponds to the the average SUVR value on the k-th region of interest (ROI) of the AAL2 atlas. We747

take the same approach as for the cortical thickness maps. The centroids of the regions in the748

AAL2 anatomical atlas is considered as a fully connected graph (so that the geodesic distance on749

the graph is the Euclidean distance between centroids), and all centroids are taken as control nodes.750

Spatial smoothing parameter is taken here of σ = 15 voxels = 22.5mm.751

For hippocampus meshes, we consider a finite-dimensional manifold of diffeomorphisms of752

the ambient 3D space that contains the hippocampus16, 17. This manifold is parameterized by a set753

of momentum vectors (mk)k attached to a set of control points (ck)k. This set of control points754

is seen as a dynamic system of particles which follows geodesics derived from the Hamiltonian:755

H(c,m) =
∑

k,l exp
(
− ||ck−cl||2

σ2

)
mT
kml, where T denotes the transpose of a vector. The expo-756

nential function is a positive definite kernel defining the co-metric on this manifold as the matrix757

K(c) =
[
exp

(
− ||ci−cj ||2

σ2

)]
i,j

. The deformation scale σ is an hyperparameter of this metric, and is758

set to 10mm in this application. For each configuration of control point c(t) and momentum vec-759
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tor m(t) at time-point t, we derive a continuous vector field vt(x) =
∑

k exp
(
− ||ck(t)−x||2

σ2

)
mk(t)760

for any point x. The trajectory of a set of control points and attached momenta therefore translate761

into a time-dependent family of vector fields. These vector fields are integrated in time from the762

identity map into a flow of diffeomorphisms. Diffeomorphisms along these geodesics are applied763

to a template shape O to give a smooth trajectory of shape deformation: t → φc,m(t) (O), where764

we denote by φc,m(t) the diffeomorphism arising from control points c, momentum vectors m at765

time-point t. The set of control points and the template shape play the role of the point p0, and766

momentum vectors the role of the cotangent-space vector K(c)−1v0.767

This construction allows the exp-parallelisation of the trajectory of control points in the man-768

ifold, which translates into another trajectory of shape ηwi(φc,m)(t)(O). This parallel trajectory769

transports the deformation patterns of the baseline geodesics into a new geometry18.770

In this construction, the template shapeO becomes a new fixed-effect of the statistical model.771

We use the metric on currents37 to measure a distance between the deformed template and the772

observations, which are meshes with different topology and number of vertices. This distance773

appears when maximizing the likelihood of the residual noise εij17, 64. It is homogeneous to an774

area, and its units is therefore in mm2. One of its main advantage is that it smooths out small775

protrusions and is insensitive to small holes or topology changes in the meshes, making it robust to776

segmentation errors and avoiding intensive mesh pre-processing. The scale at which the metric is777

insensitive to these artifacts is an hyperparameter of this attachment metric64, 65, and is set to 5mm778

in this work.779
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Calibration We use the Monte-Carlo Markov Chain Stochastic Approximation Expectation Max-

imization (MCMC-SAEM) algorithm 20, 21, 66 to calibrate the model. It is an iterative algorithm that

solves the following approximate optimization problem at each iteration:

θk+1 = argmaxθ

N∑
i=1

∫
log
[
p({yij}j, zi; θ)

]
p(zi|{yij}j; θk)dzi (2)

At each iteration, it loops over the three following steps.780

• simulation of candidate value of the random-effects zk by running several steps of a Metropolis-781

Hasting method within a block Gibbs sampler with p(z|{yij}j, θk) as ergodic distribution.782

This step essentially draws a candidate from a random walk sampler and accept or reject this783

candidate depending notably on the value of the complete likelihood p({yij}j, zk, θk), which784

measures how well the data generated with the candidate zk, i.e. f(θk, zk, {tij}j), resembles785

the actual observations {yij}j .786

• stochastic approximation using a Robbins-Monro method which keeps adding the terms787

within the integral with decreasing gains. For distributions belonging to the curved-exponential788

family (which is ensured in all cases but hippocampus by assuming parameters to be drawn789

from a prior distribution), it amounts to keep track of a set of sufficient statistics.790

• maximization over the parameters, which is done by updating the parameters with a fixed791

number of gradient descent steps for hippocampus meshes, or in closed form in other cases.792

The following procedures are preceded for the initialization of the algorithm. For the hip-793
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pocampus meshes, an average model was first computed by estimating an atlas 64 to initialize the794

template shape and the matrix A, individual geodesic regressions 67 were then estimated to ini-795

tialize the velocity vector v0. For the cortical thickness and SUVR maps, the coordinates pk of796

the initial position p0 corresponds to the mean value over all the data on the corresponding re-797

gion. As for the initial velocity v0, each coordinate vk corresponds to the average slope of linear798

regressions performed on each subject independently. In the case of the cognitive scores, a random799

initialization was used.800

The implementation of this algorithm is available in the software Deformetrical for the lon-801

gitudinal shape model, and in the Leasp softwarem for the other cases.802

Model synchronization. The time-warp functions ψ[m]
i (tij) maps the age of the i-th sub-803

ject at the j-th visit, tij to a disease stage on the normative time-line for the data type m. Tak-804

ing the model of cognitive decline as a reference (m = cog), we look for a temporal map-805

ping Φ[m](t) = λ[m] · t + µ[m] between the normative time-line for data type m and the one of806

the cognitive decline so that Φ[m] ◦ ψ[m]
i (tij) is as close as possible to ψ[cog]

i (tij) by minimizing807

N∑
i=1

Ni∑
j=1

∣∣∣λ[m] · ψ[m]
i (tij) + µ[m] − ψ[cog]

i (tij)
∣∣∣2, which admits a closed form solution. This steps al-808

lows the synchronization of different models of disease progression.809

Estimation of age of diagnosis. The time-point ψ[cog]
i (tdiag

i ) maps the age at which the i-th sub-810

ject was diagnosed with the disease, i.e. tdiag
i , to a disease stage that ideally would be the same for811

all subject. In practice, we used the average stage tdiag = 1
N

∑N
i=1 ψ

[cog]
i (tdiag

i ) as an estimate of the812

lwww.deformetrica.org
mhttps://gitlab.icm-institute.org/aramislab/longitudina
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diagnosis time on the normative time-line of the model of cognitive decline. Note that this estimate813

is the best predictor of the age at diagnosis, as it minimizes
∑N

i=1

∣∣∣{ψ[m]
i }−1(tdiag)− tdiag

i

∣∣∣2.814

Personalization Once the model is calibrated on a longitudinal data set, we personalize it to the

temporal sequence {yij, tij}j of any target subject i by finding the values of the random-effects zi

that maximizes the posterior log-likelihood:

log p(zi|{yij}j, θ̂) = log p({yij}j|zi, θ̂) + log p(zi|θ̂) + Constant. (3)

The first term log p({yij}j|zi, θ̂) ∝ −
∑Ni

j=1

∥∥yij − f(zi, θ̂, tij)
∥∥2 measures the distance be-815

tween the observations and the current fit of the model to this data. The norm considered is the816

one appearing in the noise likelihood: sum of squared differences for neuro-psychological as-817

sessments, PET images and cortical thickness maps, and the currents distance between meshes818

for hippocampus meshes37. The second term is a prior on the likelihood of the random-effects.819

This minimization problem is solved using Powell’s method for the hippocampus meshes, and the820

L-BFGS algorithm 68 for all other modalities. Both algorithms were taken from the SciPy 1.1.0821

libraryn.822

At convergence, the residual εi,j = yij − f(ẑi, θ̂, tij) for the optimal value of the random-823

effect ẑi is called the reconstruction error of the j-th observation of the i-th subject. Note that in824

the case of the hippocampus meshes, only the absolute reconstruction error |εij| can be computed,825

because the currents representation is a multivariate vector, of which we take the norm37.826

nhttps://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

50



We compare the distribution of the reconstruction errors with the uncertainty in the measure-827

ments, which is estimated as follows. In the ADNI protocol69, 70, most MRI sessions consist of a828

pair of test and re-test MRI, namely two scans performed on the same day one immediately after829

the other one. For 1841 out of 1993 MRI sessions, we measure therefore the differences between830

the MRI derived data (hippocampus meshes and cortical thickness maps) when using the test or831

the re-test image. These differences give an empirical distribution of the noise due to variations in832

image acquisition and processing.833

For PET derived data, we use the baseline and follow-up scans of stable cognitively normal834

and amyloid negative subjects in ADNI, as a proxy to test / re-test data (125 subjects, 244 visits835

with a follow-up time of 18 months). For those subjects, the changes in glucose metabolism over836

a 18 months period is supposed to be negligible compared to all the other factors affecting the837

measurements such as variations in reaction to radiotracers, and methods for PET reconstruction,838

image correction and extraction of regional measurements.839

Test / re-test studies have shown a that the MMSE, which scales from 0 to 30, is subject840

to a difference between two sessions, whose standard deviation ranges from 1.3 for a one-month841

interval71 up to 1.82 for a 1.5 year long interval72, thus representing a standard deviation of 4.3% to842

6%. Another study73 measured the former ADAS-Cog that scales between 0 and 70 three times at843

a 2-week interval, with an agreement between raters. The inter-ratter standard deviation is of 9.64844

between the first and second test, and of 6.79 between the second and third test. The intra-rater845

standard deviation is of 8.16 between the first and third visit. This corresponds to a standard devia-846

tion ranging from 9.7% to 13.8%. On average, we consider such neuro-psychological assessments847
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to have a zero-mean Gaussian distribution of noise with standard deviation of order 7%.848

Simulation The calibration of the model and its personalization to the training subjects produce a849

series of values of the random-effects zi. As sex has been found to be one of the most discriminative850

co-variates, we separate the random-effects in two groups: men and women. For each group, we851

estimate two empirical multivariate distributions of these random-effects:852

• a kernel density estimation is performed to finely capture the empirical distribution of the853

time-related parameters, i.e. the speed factor, time-shift, and baseline age;854

• a multivariate Gaussian distribution is fitted on all the individual parameters, i.e. the time-855

related ones augmented with the space-shift-encoding sources.856

A new individual is simulated by drawing new random-effects zsim
i according to the following857

procedure:858

• its speed factor, time-shift and baseline age are drawn from the previously-estimated kernel859

density;860

• its sources are drawn from the multivariate Gaussian conditional distribution with respect to861

its already-drawn time parameters.862

We then generate the corresponding data by computing f(θ̂, zsim
i , t) at any arbitrary age t.863

To validate our simulation method, we simulate a number of subjects equal to the number864

of training subjects for each modality, with the same sex ratio as in the training set, and then865
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compare how well the simulated cohort replicates the original cohort by comparing statistics of the866

simulated data with the corresponding statistics of the original data set.867

Cofactor analysis We take the series of random-effect estimates after model calibration and per-868

sonalization on a given training data set. For each data type, we look for correlations between the869

values of these random-effects and a series of co-factors: gender, APOE status, marital status, level870

of education and amyloid status. On the one hand, the series of co-factor is regressed against the871

uni-dimensional temporal random effects (time-shift τi and acceleration factor αi); the statistical872

significance of the slope coefficients is assessed by a two-sided t-test. On the other hand, for the873

multivariate vector of sources (si), we perform a 2-blocks partial least square 74 method to iden-874

tify correlations between a linear combination of sources and co-factors. The resulting series of875

p-values are corrected for multiple comparisons using the False Discovery Rate (FDR) method.876

When a significant association between a linear combination of sources (i.e. a vector d in the877

multivariate space of sources) and a categorical co-factor has been found, we project the individual878

source estimates on this direction (i.e. bi = dT si) and compute the distance between the empirical879

means of each class (δ12 = b2 − b1). We select two points in the source space at u = ±aδ12/2880

to represent the typical configuration of each class, where a = 1 (for the cortical thinning) or 3881

(for the hippocampus shape) is a factor to amplify differences for better visualisation. We then882

reconstruct the corresponding typical data by computing the exp-parallel curve in the direction u883

at a given time-point t: ηAu(γ0)(t).884
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A Extended Data885

Extended Data Figure 1: Map of the annual rate of SUVR decrease at age of diagnosis computed
from the model of hypometabolism shown in Fig. 2.
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Extended Data Figure 2: Map of the annual rate of cortical atrophy at age of diagnosis computed
from the model of cortical thinning shown in Fig. 2.
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Extended Data Figure 3: Robustness of model calibration and personalization. Estimated time-
shifts and speed factors when the individual belongs to the training data (x-axis) or to the test-set
(y-axis). The five colors correspond to the folds the individuals belong to.
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Extended Data Figure 4: Reconstruction errors in hippocampus volume. Superimposition of the
distribution of the reconstruction errors (in red) and test / re-test differences (in blue) measured
as volumes for the left and right hippocampus (left and right panel respectively). Whereas the
distribution of the test / re-test differences is centered (empirical mean of 0.5 mm3 for the left
hippocampus and −1.2 mm3 for the right hippocampus), the distribution of the reconstruction
errors has an empirical mean of−84.5 mm3 for the left hippocampus and−67.3 mm3 for the right
hippocampus. The standard deviations of the distributions are: 208.6 mm3 and 210.2 mm3 for the
test / re-test differences for left and right hippocampus respectively, to be compared to 243.2 mm3

and 267.2 mm3 for the reconstruction errors.
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(a) FDG-PET SUVR values. The mean error is of
1.0×10−4 ± 0.044 (red), and−1.3×10−4 ± 0.044
(green).
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(b) Mean cortical thickness. The mean error is of
5.8 × 10−4 ± 0.040mm (red) and 6.1 × 10−4 ±
0.040mm (green).
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(c) Left hippocampus. The mean error is 66.0 ±
13.6mm2 (red), and 70.7 ± 14.9mm2 (green).
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(d) Right hippocampus. The mean error is 66.6 ±
12.8mm2 (red), and 71.7 ± 14.0mm2 (green).
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(e) Neuro-psychological assessments. The mean
error is −0.19 ± 7.5% (red), and −0.14 ± 7.5%
(green).

Extended Data Figure 5: Generalization error to unseen data. The distribution of reconstruction
errors when calibration and personalization are done on the whole data set (in red, as in Fig. 3) is
superimposed with the one estimated in the cross-validation procedure (in green).
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Extended Data Figure 6: Sex differences in hippocampus shape at age of diagnosis. Deformations
of left and right hippocampi are shown in the direction of the significant space-shifts viewed from
front (top-left), back (bottom-left), top (top-right) and bottom (bottom-right). Blue shapes are
deformed in the direction of men. Red shapes are deformed in the direction of women. Amount of
deformation has been magnified by a factor 3 in each direction for visualization purposes.
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Extended Data Figure 7: Sex differences in cortical thickness at age of diagnosis. Color encodes
in each brain region the estimated difference in cortical thickness between women and men at the
stage of diagnosis.
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Extended Data Figure 8: Differences in cortical thickness at age of diagnosis between amyloid
positive and amyloid negative subjects. Color encodes in each brain region the estimated difference
in cortical thickness between amyloid positive subjects and amyloid negative subjects at the stage
of diagnosis.
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Extended Data Figure 9: Empirical variance-covariance matrices of the temporal random effects.
We use baseline age, speed factor (aka log-acceleration factor), time-shift and the unidimensional
projection of the spatial random effects learned by a Partial Least Square regression of the sources.
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Extended Data Table 1: Summary statistics of the subject subsets for each data type

ADAS & MMSE PET MRI
Number of subjects 223 157 322

Number of visits 1235 690 1993
Average number of visits per subject (± std) 5.5 (±1.1) 4.4 (± 2.1) 5.8 (± 2.4)

Average age (± std) 76.2 (± 6.9) 74.0 (± 7.2) 74.0 (± 6.7)
Sex ratio (F/M in %) 39 / 61 44 / 56 41 / 59

Amyloid status (+/-/unknown in %) 65.5 / 7.2 / 27.3 77.4 / 7.3 / 15.3 73.2 / 7.1 / 19.7
APOE carriership (%) 62.8 64.2 65.2

Education (mean ± std, in years) 15.8 (± 2.8) 15.8 (± 2.7) 15.9 (± 2.8)
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Modality Parameters
All data Cross-

validation

FDG-PET images

σ (no units) 0.101 0.101 (± 0.001)

t0 (years) 75.5 74.9 (± 0.9)

στ (years) 11.9 11.5 (± 0.3)

σξ (no units) 1.30 1.28 (± 0.03)

Cortical thickness

σ (mm) 0.442 0.442 (± 0.001)

t0 (years) 82.0 82.7 (± 0.7)

στ (years) 16.9 18.2 (± 0.7)

σξ (no units) 0.99 1.03 (± 0.02)

Right hippocampus

σ (mm2) 2.49 2.60 (± 0.03)

t0 (years) 76.2 75.7 (± 0.3)

στ (years) 9.15 10.04 (± 0.66)

σξ (no units) 0.71 0.78 (± 0.03)

Left hippocampus

σ (mm2) 2.67 2.74 (± 0.04)

t0 (years) 76.3 76.3 (± 0.3)

στ (years) 8.53 9.09 (± 0.50)

σξ (no units) 0.66 0.68 (± 0.03)

Cognitive scores

σ (no units) 0.081 0.081 (± 0.001)

t0 (years) 71.5 72.4 (± 0.8)

στ (years) 7.29 7.36 (± 0.25)

σξ (no units) 1.07 1.11 (± 0.11)

Extended Data Table 2: Fixed-effects estimates using calibration on the whole data set (first col-
umn) and in a five fold cross-validation setting (second column) where mean and standard devia-
tions of the five estimates are shown.

64



M
ea

n
E

rr
or

(±
st

d)
M

ea
n

A
bs

ol
ut

e
E

rr
or

(±
st

d)

M
od

al
ity

(u
ni

t)
R

ec
on

st
ru

ct
io

n
M

ea
su

re
m

en
tn

oi
se

R
ec

on
st

ru
ct

io
n

M
ea

su
re

m
en

tn
oi

se

FD
G

-P
E

T
im

ag
es

)
1.

1
×
−

10
4
(±

0.
10

)
−

3.
0
×

10
−
3
(±

0.
09

5)
7.

6(
±

6.
5)
×

10
−
2

6.
8(
±

9.
4)
×

10
−
2

C
or

tic
al

th
ic

kn
es

s
(m

m
)

5.
8
×

10
−
4
(±

0.
44

)
−

1.
1
×

10
−
3
(±

0.
28

)
0.

35
(±

0.
28

)
0.

19
(±

0.
20

)

R
ig

ht
hi

pp
oc

am
pu

s
(m

m
2
)

N
/A

N
/A

69
.8

(±
15
.0

)
85
.2

(±
40
.1

)

Le
ft

hi
pp

oc
am

pu
s

(m
m

2
)

N
/A

N
/A

68
.5

(±
15
.9

)
83
.2

(±
36
.0

)

C
og

ni
tiv

e
sc

or
es

−
2.

2
×

10
−
3
(±

0.
07

5)
0(
±

0.
07

0)
5.

5(
±

5.
0)
×

10
−
2

N
/A

E
xt

en
de

d
D

at
a

Ta
bl

e
3:

C
om

pa
ri

so
n

be
tw

ee
n

th
e

st
at

is
tic

s
of

th
e

re
co

ns
tr

uc
tio

n
er

ro
rs

an
d

th
e

on
es

of
th

e
di

st
ri

bu
tio

n
of

th
e

m
ea

su
re

m
en

tn
oi

se
.

65


